När kan ingenting vara något? Det verkar som en dum fråga och ganska paradoxal. Inom matematiska fältet för uppsättningsteori är det rutin för ingenting att vara något annat än ingenting. Hur kan det vara såhär?
När vi bildar en uppsättning utan element, har vi inte längre ingenting. Vi har en uppsättning med ingenting i det. Det finns ett specialnamn för uppsättningen som inte innehåller några element. Detta kallas den tomma eller nulluppsättningen.
Definitionen av den tomma uppsättningen är ganska subtil och kräver lite tanke. Det är viktigt att komma ihåg att vi tänker på en uppsättning som en samling element. Uppsättningen i sig skiljer sig från elementen som den innehåller.
Vi tittar till exempel på 5, som är en uppsättning som innehåller elementet 5. Uppsättningen 5 är inte ett nummer. Det är en uppsättning med numret 5 som ett element, medan 5 är ett nummer.
På liknande sätt är den tomma uppsättningen ingenting. Istället är det setet utan element. Det hjälper till att tänka på uppsättningar som containrar, och elementen är de saker som vi lägger i dem. En tom behållare är fortfarande en behållare och är analog med den tomma uppsättningen.
Den tomma uppsättningen är unik, varför det är helt lämpligt att prata om de tom uppsättning, snarare än en tom uppsättning. Detta gör att den tomma uppsättningen skiljer sig från andra uppsättningar. Det finns oändligt många uppsättningar med ett element i dem. Uppsättningarna a, 1, b och 123 har var och en ett element, och därför är de likvärdiga med varandra. Eftersom själva elementen skiljer sig från varandra är uppsättningarna inte lika.
Det finns inget speciellt med exemplen ovan som var och en har ett element. Med ett undantag finns det oändligt många uppsättningar av den storleken för alla räkningsnummer eller oändlighet. Undantaget är för numret noll. Det finns bara en uppsättning, den tomma uppsättningen, utan några element i den.
Det matematiska beviset på detta är inte svårt. Vi antar först att den tomma uppsättningen inte är unik, att det finns två uppsättningar utan element i dem, och använder sedan några egenskaper från uppsättningsteorin för att visa att detta antagande innebär en motsägelse.
Den tomma uppsättningen betecknas med symbolen ∅, som kommer från en liknande symbol i det danska alfabetet. Vissa böcker hänvisar till den tomma uppsättningen med dess alternativa namn på nolluppsättningen.
Eftersom det bara finns en tom uppsättning är det värt att se vad som händer när uppsättningsoperationerna för skärning, förening och komplement används med den tomma uppsättningen och en allmän uppsättning som vi kommer att beteckna med X. Det är också intressant att överväga delmängden av den tomma uppsättningen och när är den tomma uppsättningen en delmängd. Dessa fakta samlas nedan: