När eleverna först går in i sitt nyårsstudieår (nionde klass) i gymnasiet, konfronteras de med en mängd olika val för läroplanen som de skulle vilja följa, vilket inkluderar vilken nivå av matematiska kurser studenten vill registrera sig i. Beroende på om eller inte den här eleven väljer det avancerade, remediala eller genomsnittliga spåret för matematik, de kanske börjar sin gymnasieutbildning med antingen geometri, pre-algebra eller algebra I.
Men oavsett vilken kompetensnivå en student har för ämnet matematik förväntas alla studenter som studerar nionde klass att förstå och kunna visa sin förståelse för vissa kärnbegrepp relaterade till studiefältet, inklusive resonemang för att lösa flera stegproblem med rationella och irrationella siffror; tillämpa mätkunskap på 2- och tredimensionella figurer; applicera trigonometri på problem som involverar trianglar och geometriska formler för att lösa för cirklarnas område och omkrets; undersöka situationer som involverar linjära, kvadratiska, polynomiska, trigonometriska, exponentiella, logaritmiska och rationella funktioner; och utforma statistiska experiment för att dra slutsatser från den verkliga världen om datamängder.
Dessa färdigheter är viktiga för fortbildning inom matematikområdet, så det är viktigt för lärare på alla nivåer att se till att deras elever fullt ut förstår dessa grundläggande principer inom geometri, algebra, trigonometri och till och med någon förberäkning när de är klar nionde klass.
Som nämnts får elever som går på gymnasiet valet för vilket utbildningsspår de vill följa med olika ämnen, inklusive matematik. Oavsett vilket spår de väljer, förväntas dock alla studenter i USA att genomföra minst fyra poäng (år) matematikutbildning under sin gymnasiet.
För elever som väljer den avancerade placeringskursen för matematikstudier börjar deras gymnasieutbildning faktiskt i sjunde och åttonde klass där de förväntas ta Algebra I eller geometri innan de går in i gymnasiet för att frigöra tid för att studera mer avancerad matematik genom deras äldre år. I detta fall börjar nybörjare på den avancerade kursen sin gymnasiekarriär med antingen Algebra II eller Geometry, beroende på om de tog Algebra I eller Geometry i ungdomshögskolan.
Studenter på medelbanan, å andra sidan, börjar sin gymnasieutbildning med Algebra I, med geometri deras andra år, Algebra II deras juniorår och Pre-Calculus eller Trigonometry under deras seniorår.
Slutligen kan elever som behöver lite mer hjälp i att lära sig de grundläggande begreppen i matematik välja att gå in i remedial utbildningsspåret, som börjar med Pre-Algebra i nionde klass och fortsätter till Algebra I i 10: e, Geometry i 11th och Algebra II i deras äldre år.
Oavsett vilken utbildningsspår studenter registrerar sig, kommer alla examen nionde klassare att testas på och förväntas visa en förståelse för flera kärnbegrepp relaterade till avancerad matematik inklusive de inom områdena nummeridentifiering, mätningar, geometri, algebra och mönster och sannolikhet.
För nummeridentifiering ska eleverna kunna resonera, ordna, jämföra och lösa flerstegsproblem med rationella och irrationella siffror samt förstå det komplexa talsystemet, kunna undersöka och lösa ett antal problem och använda koordinatsystemet med både negativa och positiva heltal.
När det gäller mätningar förväntas nionde klassade kandidater tillämpa mätkunskap på två- och tredimensionella figurer exakt inklusive avstånd och vinklar och ett mer komplext plan samtidigt som de kan lösa en mängd ordproblem med kapacitet, massa och tid med användning av Pythagoras teorem och andra liknande matematiska begrepp.
Studenter förväntas också förstå grunderna i geometri inklusive förmågan att tillämpa trigonometri i problem situationer som involverar trianglar och transformationer, koordinater och vektorer för att lösa andra geometriska problem; de kommer också att testas på att härleda ekvationen för en cirkel, ellips, parabolas och hyperbolor och identifiera deras egenskaper, särskilt för kvadratiska och koniska sektioner.
I Algebra bör eleverna kunna undersöka situationer som involverar linjära, kvadratiska, polynomiska, trigonometriska, exponentiella, logaritmiska och rationella funktioner samt kunna posera och bevisa en rad olika teorem. Studenter kommer också att uppmanas att använda matriser för att representera data och för att behärska problem med de fyra operationerna och den första graden för att lösa för en mängd olika polynomier.
Slutligen, när det gäller sannolikhet, bör eleverna kunna utforma och testa statistiska experiment och tillämpa slumpmässiga variabler på situationer i den verkliga världen. Detta gör att de kan dra slutsatser och visa sammanfattningar med lämpliga diagram och grafer och sedan analysera, stödja och argumentera slutsatser baserade på den statistiska informationen.