Markovs ojämlikhet är ett bra resultat i sannolikhet som ger information om en sannolikhetsfördelning. Den anmärkningsvärda aspekten med det är att ojämlikheten gäller för varje fördelning med positiva värden, oavsett vilka andra funktioner som den har. Markovs ojämlikhet ger en övre gräns för procenten av fördelningen som ligger över ett visst värde.
Markovs ojämlikhet säger det för en positiv slumpvariabel X och alla positiva verkliga nummer en, sannolikheten för att X är större än eller lika med en är mindre än eller lika med det förväntade värdet på X delat med en.
Ovanstående beskrivning kan anges mer kortfattat med hjälp av matematisk notation. I symboler skriver vi Markovs ojämlikhet som:
P (X ≥ en) ≤ E( X) /en
För att illustrera ojämlikheten, anta att vi har en fördelning med icke-negativa värden (till exempel en chi-kvadratfördelning). Om denna slumpmässiga variabel X har förväntat värde på 3 kommer vi att titta på sannolikheter för några värden på en.
Om vi vet mer om distributionen som vi arbetar med, kan vi vanligtvis förbättra Markovs ojämlikhet. Värdet med att använda det är att det gäller för all distribution med icke-negativa värden.
Om vi till exempel vet elevernas medelhöjd på en grundskola. Markovs ojämlikhet säger att inte mer än en sjättedel av eleverna kan ha en höjd större än sex gånger medelhöjden.
Den andra stora användningen av Markovs ojämlikhet är att bevisa Chebysjevs ojämlikhet. Detta faktum resulterar i att namnet "Chebysjevs ojämlikhet" också tillämpas på Markovs ojämlikhet. Förvirringen av namnet på ojämlikheterna beror också på historiska omständigheter. Andrey Markov var studenten till Pafnuty Chebyshev. Chebysjevs arbete innehåller ojämlikheten som tillskrivs Markov.