En operation som ofta används för att bilda nya uppsättningar från gamla kallas facket. I vanligt bruk betyder ordet fackförening ett sammanförande, till exempel fackföreningar i organiserat arbete eller unionens delstat som den amerikanska presidenten håller inför en gemensam kongressession. I matematisk mening behåller föreningen mellan två uppsättningar denna idé om att föra samman. Mer exakt föreningen av två uppsättningar EN och B är uppsättningen av alla element x Så att x är ett element i uppsättningen EN eller x är ett element i uppsättningen B. Ordet som betyder att vi använder en union är ordet "eller".
När vi använder ordet "eller" i dagliga samtal kanske vi inte inser att detta ord används på två olika sätt. Vägen dras oftast ut ur konversationens sammanhang. Om du frågades "Vill du ha kycklingen eller biffen?" Är den vanliga implikationen att du kan ha det ena eller det andra, men inte båda. Kontrast detta med frågan, "Vill du smör eller gräddfil på din bakade potatis?" Här "eller" används i inkluderande mening i att du bara kunde välja smör, bara gräddfil eller både smör och gräddfil.
I matematik används ordet "eller" i inkluderande betydelse. Så uttalandet, "x är en del av EN eller ett element av B"betyder att en av de tre är möjliga:
För ett exempel på hur föreningen mellan två uppsättningar bildar en ny uppsättning, låt oss överväga uppsättningarna EN = 1, 2, 3, 4, 5 och B = 3, 4, 5, 6, 7, 8. För att hitta föreningen mellan dessa två uppsättningar listar vi helt enkelt alla element som vi ser, och är noga med att inte kopiera några element. Siffrorna 1, 2, 3, 4, 5, 6, 7, 8 är i endera eller den andra, därför är föreningen av EN och B är 1, 2, 3, 4, 5, 6, 7, 8.
Förutom att förstå begreppen kring uppsättningsteorioperationer är det viktigt att kunna läsa symboler som används för att beteckna dessa operationer. Symbolen som används för att förena de två uppsättningarna EN och B ges av EN ∪ B. Ett sätt att komma ihåg symbolen ∪ hänvisar till unionen är att märka dess likhet med ett huvudstad U, vilket är kort för ordet "union." Var försiktig, eftersom symbolen för unionen är mycket lik symbolen för skärningspunkten. Den ena erhålls från den andra med en vertikal vipp.
För att se denna notation i handling, se tillbaka exemplet ovan. Här hade vi seten EN = 1, 2, 3, 4, 5 och B = 3, 4, 5, 6, 7, 8. Så vi skulle skriva uppsättningen ekvation EN ∪ B = 1, 2, 3, 4, 5, 6, 7, 8.
En grundläggande identitet som involverar fackföreningen visar oss vad som händer när vi tar föreningen i varje uppsättning med den tomma uppsättningen, betecknad med # 8709. Den tomma uppsättningen är uppsättningen utan element. Så att ansluta detta till någon annan uppsättning kommer inte att ha någon effekt. Med andra ord, föreningen av alla uppsättningar med den tomma uppsättningen ger oss den ursprungliga uppsättningen
Denna identitet blir ännu mer kompakt med användningen av vår notation. Vi har identiteten: EN ∪ ∅ = EN.
Vad händer för det andra extrema, vad händer när vi undersöker föreningen mellan en set och den universella satsen? Eftersom den universella uppsättningen innehåller alla element, kan vi inte lägga till något annat till detta. Så föreningen eller någon uppsättning med den universella uppsättningen är den universella uppsättningen.
Återigen hjälper vår notation oss att uttrycka denna identitet i ett mer kompakt format. För alla uppsättningar EN och den universella uppsättningen U, EN ∪ U = U.
Det finns många fler uppsatta identiteter som involverar användningen av fackföreningen. Naturligtvis är det alltid bra att öva på att använda språket i setteorin. Några av de viktigare anges nedan. För alla uppsättningar EN, och B och D vi har: